Distance closures on complex networks

Author:

SIMAS TIAGO,ROCHA LUIS M.

Abstract

AbstractTo expand the toolbox available to network science, we study the isomorphism between distance and Fuzzy (proximity or strength) graphs. Distinct transitive closures in Fuzzy graphs lead to closures of their isomorphic distance graphs with widely different structural properties. For instance, the All Pairs Shortest Paths (APSP) problem, based on the Dijkstra algorithm, is equivalent to a metric closure, which is only one of the possible ways to calculate shortest paths in weighted graphs. We show that different closures lead to different distortions of the original topology of weighted graphs. Therefore, complex network analyses that depend on the calculation of shortest paths on weighted graphs should take into account the closure choice and associated topological distortion. We characterize the isomorphism using the max-min and Dombi disjunction/conjunction pairs. This allows us to: (1) study alternative distance closures, such as those based on diffusion, metric, and ultra-metric distances; (2) identify the operators closest to the metric closure of distance graphs (the APSP), but which are logically consistent; and (3) propose a simple method to compute alternative path length measures and corresponding distance closures using existing algorithms for the APSP. In particular, we show that a specific diffusion distance is promising for community detection in complex networks, and is based on desirable axioms for logical inference or approximate reasoning on networks; it also provides a simple algebraic means to compute diffusion processes on networks. Based on these results, we argue that choosing different distance closures can lead to different conclusions about indirect associations on network data, as well as the structure of complex networks, and are thus important to consider.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science,Communication,Social Psychology

Reference85 articles.

1. Strehl A. (2002). Relationship-based Clustering and Cluster Ensembles for High-dimensional Data Mining. PhD thesis, Austin University of Texas.

2. The Topology of the Possible: Formal Spaces Underlying Patterns of Evolutionary Change

3. Triangular Norms

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3