Clustering attributed graphs: Models, measures and methods

Author:

BOTHOREL CECILE,CRUZ JUAN DAVID,MAGNANI MATTEO,MICENKOVÁ BARBORA

Abstract

AbstractClustering a graph, i.e., assigning its nodes to groups, is an important operation whose best known application is the discovery of communities in social networks. Graph clustering and community detection have traditionally focused on graphs without attributes, with the notable exception of edge weights. However, these models only provide a partial representation of real social systems, that are thus often described using node attributes, representing features of the actors, and edge attributes, representing different kinds of relationships among them. We refer to these models asattributed graphs. Consequently, existing graph clustering methods have been recently extended to deal with node and edge attributes. This article is a literature survey on this topic, organizing, and presenting recent research results in a uniform way, characterizing the main existing clustering methods and highlighting their conceptual differences. We also cover the important topic of clustering evaluation and identify current open problems.

Publisher

Cambridge University Press (CUP)

Subject

Sociology and Political Science,Communication,Social Psychology

Cited by 164 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diverse joint nonnegative matrix tri-factorization for attributed graph clustering;Applied Soft Computing;2024-10

2. Effective Clustering on Large Attributed Bipartite Graphs;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

3. A new community detection method for simplified networks by combining structure and attribute information;Expert Systems with Applications;2024-07

4. Discovering Personalized Characteristic Communities in Attributed Graphs;2024 IEEE 40th International Conference on Data Engineering (ICDE);2024-05-13

5. H-Louvain: Hierarchical Louvain-based community detection in social media data streams;Peer-to-Peer Networking and Applications;2024-05-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3