Three-dimensional buoyancy-driven flow along a fractured boundary

Author:

Farcas Adrian,Woods Andrew W.

Abstract

AbstractWe describe the steady motion of a buoyant fluid migrating through a porous layer along a plane, inclined boundary from a localized well. We first describe the transition from an approximately radially spreading current near the source, to a flow which runs upslope, as it spreads in the cross-slope direction. Using the model, we predict the maximum injection rate for which, near the source, the flow does not fully flood the porous layer. We then account for the presence of a fracture on the boundary through which some of the flow can drain upwards, and calculate how the current is partitioned between the fraction that drains and the remainder which continues running upslope. The fraction that drains increases with the permeability of the fracture and also with the distance from the source, as the flow slows and has more time to drain. We introduce new scalings and some asymptotic solutions to describe both the flow near the fracture and the three-dimensional surface of the injected fluid as it spreads upslope. We extend the model to the case of multiple fractures, so that the current eventually drains away as it flows over successive fractures. We calculate the shape of the region that is invaded by the buoyant fluid and we show that this flow, draining through a series of discrete fractures, may be approximated by a flow that continuously drains through its upper boundary. The effective small uniform permeability of this upper boundary is given by ${k}_{b} \approx \int \nolimits {k}_{f} \hspace{0.167em} \mathrm{d} x/ {D}_{F} $, where $\int \nolimits {k}_{f} \hspace{0.167em} \mathrm{d} x$ is the integral of permeability across the width of the fracture and ${D}_{F} $ is the inter-fracture spacing. Finally, we discuss the relevance of the work for CO2 sequestration and we compare some simple predictions of the plume shape, volume and volume flux derived from our model with data from the Sleipner project, Norway for the plume of CO2 which developed in Horizon 1.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3