Hydrodynamic diffusion of sedimenting point particles in a vertical shear flow

Author:

Crosby Andrew,Lister John R.

Abstract

AbstractThe hydrodynamic diffusion of sedimenting point particles in a vertically sheared periodic system is investigated numerically and theoretically. In both the velocity-gradient direction and the vorticity direction, the rate of hydrodynamic diffusion is reduced as the shear rate is increased. In the velocity-gradient direction, two-particle interactions cause no net displacement, and three-particle interactions are necessary for diffusive behaviour. In contrast to an unsheared system, the resulting diffusion coefficient is only weakly dependent upon the size of the system and ${\widehat{D}}_{xx} \sim 4. 2\times 1{0}^{- 4} \hspace{0.167em} {n}^{2} {(f/ \mu )}^{4} {\dot {\gamma } }^{- 3} \ln (0. 42\widehat{L}{(\mu \dot {\gamma } / f)}^{1/ 2} )$, where $n$ is the particle number density, $f$ the force per particle, $\mu $ the fluid viscosity, $\dot {\gamma } $ the imposed shear rate, and $\widehat{L}$ the system size. In the vorticity direction, although individual two-particle interactions cause no net displacement, a superposition of interactions is sufficient to cause diffusion-like linear growth of the ensemble-averaged square particle displacements. The associated diffusion coefficient is given by ${\widehat{D}}_{yy} \sim 9. 47\times 1{0}^{- 4} \hspace{0.167em} n{(f/ \mu )}^{2} \widehat{L}\hspace{0.167em} {\dot {\gamma } }^{- 1} $. At sufficiently long times, the effect of multi-particle interactions cannot be neglected and there is a transition to another regime in which the diffusion coefficient is similar in form, but slightly reduced from this value. The dependence of ${\widehat{D}}_{xx} $ and ${\widehat{D}}_{yy} $ on the number density and dimensionless shear rate is explained using theoretical scaling arguments and analyses.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference28 articles.

1. Screening in sedimenting suspensions

2. Rayleigh–Taylor instability of an inclined buoyant viscous cylinder

3. Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres

4. Modeling and direct simulation of velocity fluctuations and particle-velocity correlations in sedimentation;Cunha;Trans. ASME: J. Fluids Engng,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3