Meridional trapping and zonal propagation of inertial waves in a rotating fluid shell

Author:

Rabitti Anna,Maas Leo R. M.

Abstract

AbstractInertial waves propagate in homogeneous rotating fluids, and constitute a challenging and simplified case study for the broader class of inertio-gravity waves, present in all geophysical and astrophysical media, and responsible for energetically costly processes such as diapycnal and angular momentum mixing. However, a complete analytical description and understanding of internal waves in arbitrarily shaped enclosed domains, such as the ocean or a planet liquid core, is still missing. In this work, the inviscid, linear inertial wave field is investigated by means of three-dimensional ray tracing in spherical shell domains, having in mind possible oceanographic applications. Rays are here classically interpreted as representative of energy paths, but in contrast to previous studies, they are now launched with a non-zero initial zonal component allowing for a more realistic, localized forcing and the development of azimuthal inhomogeneities. We find that meridional planes generally act in the shell geometry as attractors for ray trajectories. In addition, the existence of trajectories that are not subject to meridional trapping is here observed for the first time. Their dynamics was not captured by the previous purely meridional studies and unveils a new class of possible solutions for inertial motion in the spherical shell. Both observed behaviours shed some new light on possible mechanisms of energy localization, a key process that still deserves further investigation in our ocean, as well as in other stratified, rotating media.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3