Solution of the quasi-one-dimensional linearized Euler equations using flow invariants and the Magnus expansion

Author:

Duran Ignacio,Moreau Stephane

Abstract

AbstractThe acoustic and entropy transfer functions of quasi-one-dimensional nozzles are studied analytically for both subsonic and choked flows with and without shock waves. The present analytical study extends both the compact nozzle solution obtained by Marble & Candel (J. Sound Vib., vol. 55, 1977, pp. 225–243) and the effective nozzle length proposed by Stow, Dowling & Hynes (J. Fluid Mech., vol. 467, 2002, pp. 215–239) and by Goh & Morgans (J. Sound Vib., vol. 330, 2011, pp. 5184–5198) to non-zero frequencies for both modulus and phase through an asymptotic expansion of the linearized Euler equations. It also extends the piecewise-linear approximation of the velocity profile in the nozzle proposed by Moase, Brear & Manzie (J. Fluid Mech., vol. 585, 2007, pp. 281–304) to any arbitrary profile or equivalently any nozzle geometry. The equations are written as a function of three variables, namely the dimensionless mass, total temperature and entropy fluctuations, yielding a first-order linear system of differential equations with varying coefficients, which is solved using the Magnus expansion. The solution shows that both the modulus and the phase of the transfer functions of the nozzle have a strong dependence on the frequency. This holds for both choked flows and subsonic converging–diverging nozzles. The method is used to compare two different nozzle geometries with the same inlet and outlet Mach numbers, showing that, even if the compact solution predicts no differences between the transfer functions of the two nozzles, significant differences are found at non-zero frequencies. A parametric study is finally performed to calculate the indirect to direct noise ratio for a model combustor, showing that this ratio decreases at higher frequencies.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 122 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3