A unified criterion for the centrifugal instabilities of vortices and swirling jets

Author:

Billant Paul,Gallaire François

Abstract

AbstractSwirling jets and vortices can both be unstable to the centrifugal instability but with a different wavenumber selection: the most unstable perturbations for swirling jets in inviscid fluids have an infinite azimuthal wavenumber, whereas, for vortices, they are axisymmetric but with an infinite axial wavenumber. Accordingly, sufficient condition for instability in inviscid fluids have been derived asymptotically in the limits of large azimuthal wavenumber $m$ for swirling jets (Leibovich and Stewartson, J. Fluid Mech., vol. 126, 1983, pp. 335–356) and large dimensionless axial wavenumber $k$ for vortices (Billant and Gallaire, J. Fluid Mech., vol. 542, 2005, pp. 365–379). In this paper, we derive a unified criterion valid whatever the magnitude of the axial flow by performing an asymptotic analysis for large total wavenumber $ \sqrt{{k}^{2} + {m}^{2} } $. The new criterion recovers the criterion of Billant and Gallaire when the axial flow is small and the Leibovich and Stewartson criterion when the axial flow is finite and its profile sufficiently different from the angular velocity profile. When the latter condition is not satisfied, it is shown that the accuracy of the Leibovich and Stewartson asymptotics is strongly reduced. The unified criterion is validated by comparisons with numerical stability analyses of various classes of swirling jet profiles. In the case of the Batchelor vortex, it provides accurate predictions over a wider range of axial wavenumbers than the Leibovich–Stewartson criterion. The criterion shows also that a whole range of azimuthal wavenumbers are destabilized as soon as a small axial velocity component is present in a centrifugally unstable vortex.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3