Stall onset on aerofoils at low to moderately high Reynolds number flows

Author:

Morris Wallace J.,Rusak Zvi

Abstract

AbstractThe inception of leading-edge stall on stationary, two-dimensional, smooth, thin aerofoils at low to moderately high chord Reynolds number flows is investigated by a reduced-order, multiscale model problem via numerical simulations. The asymptotic theory demonstrates that a subsonic flow about a thin aerofoil can be described in terms of an outer region, around most of the aerofoil’s chord, and an inner region, around the nose, that asymptotically match each other. The flow in the outer region is dominated by the classical thin aerofoil theory. Scaled (magnified) coordinates and a modified (smaller) Reynolds number $(R{e}_{M} )$ are used to correctly account for the nonlinear behaviour and extreme velocity changes in the inner region, where both the near-stagnation and high suction areas occur. It results in a model problem of a uniform, incompressible and viscous flow past a semi-infinite parabola with a far-field circulation governed by a parameter $\tilde {A} $ that is related to the aerofoil’s angle of attack, nose radius of curvature, thickness ratio, and camber. The model flow problem is solved for various values of $\tilde {A} $ through numerical simulations based on the unsteady Navier–Stokes equations. The value ${\tilde {A} }_{s} $ where a global separation zone first erupts in the nose flow, accompanied by loss of peak streamwise velocity ahead of it and change in shedding frequency behind it, is determined as a function of $R{e}_{M} $. These values indicate the stall onset on the aerofoil at various flow conditions. It is found that ${\tilde {A} }_{s} $ decreases with $R{e}_{M} $ until some limit $R{e}_{M} $ (${\sim }300$) and then increases with further increase of Reynolds number. At low values of $R{e}_{M} $ the flow is laminar and steady, even when stall occurs. The flow in this regime is dominated by the increasing effect of the adverse pressure gradient, which eventually overcomes the ability of the viscous stress to keep the boundary layer attached to the aerofoil. The change in the nature of stall at the limit $R{e}_{M} $ is attributed to the appearance of downstream travelling waves in the boundary layer that shed from the marginal separation zone and grow in size with either $\tilde {A} $ or $R{e}_{M} $. These unsteady, convective vortical structures relax the effect of the adverse pressure gradient on the viscous boundary layer to delay the onset of stall in the mean flow to higher values of ${\tilde {A} }_{s} $. Computed results show agreement with marginal separation theory at low $R{e}_{M} $ and with available experimental data at higher $R{e}_{M} $. This simplified approach provides a universal criterion to determine the stall angle of stationary thin aerofoils with a parabolic nose.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3