An explicit algebraic model for the subgrid-scale passive scalar flux

Author:

Rasam Amin,Brethouwer Geert,Johansson Arne V.

Abstract

AbstractIn Marstorpet al. (J. Fluid Mech., vol. 639, 2009, pp. 403–432), an explicit algebraic subgrid stress model (EASSM) for large-eddy simulation (LES) was proposed, which was shown to considerably improve LES predictions of rotating and non-rotating turbulent channel flow. In this paper, we extend that work and present a new explicit algebraic subgrid scalar flux model (EASSFM) for LES, based on the modelled transport equation of the subgrid-scale (SGS) scalar flux. The new model is derived using the same kind of methodology that leads to the explicit algebraic scalar flux model of Wikströmet al. (Phys. Fluids, vol. 12, 2000, pp. 688–702). The algebraic form is based on a weak equilibrium assumption and leads to a model that depends on the resolved strain-rate and rotation-rate tensors, the resolved scalar-gradient vector and, importantly, the SGS stress tensor. An accurate prediction of the SGS scalar flux is consequently strongly dependent on an accurate description of the SGS stresses. The new EASSFM is therefore primarily used in connection with the EASSM, since this model can accurately predict SGS stresses. The resulting SGS scalar flux is not necessarily aligned with the resolved scalar gradient, and the inherent dependence on the resolved rotation-rate tensor makes the model suitable for LES of rotating flow applications. The new EASSFM (together with the EASSM) is validated for the case of passive scalar transport in a fully developed turbulent channel flow with and without system rotation. LES results with the new model show good agreement with direct numerical simulation data for both cases. The new model predictions are also compared to those of the dynamic eddy diffusivity model (DEDM) and improvements are observed in the prediction of the resolved and SGS scalar quantities. In the non-rotating case, the model performance is studied at all relevant resolutions, showing that its predictions of the Nusselt number are much less dependent on the grid resolution and are more accurate. In channel flow with wall-normal rotation, where all the SGS stresses and fluxes are non-zero, the new model shows significant improvements over the DEDM predictions of the resolved and SGS quantities.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3