Effects of surface corrugation on the stability of a zero-pressure-gradient boundary layer

Author:

Ma’mun Mochamad Dady,Asai Masahito,Inasawa Ayumu

Abstract

AbstractThe effects of surface corrugation with small amplitude on the growth of Tollmien–Schlichting (T–S) waves were examined experimentally in a zero-pressure-gradient boundary layer. Two- and three-dimensional corrugations of sinusoidal geometry with wavelengths of the same order as that of the two-dimensional T–S wave were considered. The corrugation amplitudes were one order of magnitude smaller than the boundary-layer displacement thickness. Streamwise growth of T–S waves on the corrugated walls was compared with that in the boundary layer on the smooth surface. A distinct difference was found in the destabilizing effect between the two- and three-dimensional corrugations. The two-dimensional corrugation significantly enhanced the growth of two-dimensional T–S waves even when the corrugation amplitude was only ∼10% of the displacement thickness. On decreasing the corrugation amplitude, the growth rate of two-dimensional T–S waves asymptotically approached that in the smooth-wall case. On the other hand, the three-dimensional corrugation had only a small influence on the growth of two-dimensional T–S waves even when the corrugation amplitude was as large as 20% of the displacement thickness. For three-dimensional corrugations, however, a pair of oblique waves was generated and developed by an interaction between the two-dimensional T–S wave and the corrugation-induced mean-flow distortion for the corrugation wavelength considered. On increasing the corrugation amplitude, the oblique waves generated were increased in amplitude and thus significantly influenced the secondary instability process.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3