Drops bouncing on a vibrating bath

Author:

Moláček Jan,Bush John W. M.

Abstract

AbstractWe present the results of a combined experimental and theoretical investigation of millimetric droplets bouncing on a vertically vibrating fluid bath. We first characterize the system experimentally, deducing the dependence of the droplet dynamics on the system parameters, specifically the drop size, driving acceleration and driving frequency. As the driving acceleration is increased, depending on drop size, we observe the transition from coalescing to vibrating or bouncing states, then period-doubling events that may culminate in either walking drops or chaotic bouncing states. The drop’s vertical dynamics depends critically on the ratio of the forcing frequency to the drop’s natural oscillation frequency. For example, when the data describing the coalescence–bouncing threshold and period-doubling thresholds are described in terms of this ratio, they collapse onto a single curve. We observe and rationalize the coexistence of two non-coalescing states, bouncing and vibrating, for identical system parameters. In the former state, the contact time is prescribed by the drop dynamics; in the latter, by the driving frequency. The bouncing states are described by theoretical models of increasing complexity whose predictions are tested against experimental data. We first model the drop–bath interaction in terms of a linear spring, then develop a logarithmic spring model that better captures the drop dynamics over a wider range of parameter space. While the linear spring model provides a faster, less accurate option, the logarithmic spring model is found to be more accurate and consistent with all existing data.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 132 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3