Effects of mean shear on the local turbulent entrainment process

Author:

Wolf Marc,Holzner M.,Lüthi B.,Krug D.,Kinzelbach W.,Tsinober A.

Abstract

AbstractWe report on effects of mean shear on the turbulent entrainment process, focusing in particular on their relation to small-scale processes in the proximity of the turbulent/non-turbulent interface (TNTI). Three-dimensional particle tracking velocimetry (3D-PTV) measurements of an axisymmetric jet are compared to data from a direct numerical simulation (DNS) of a zero-mean-shear (ZMS) flow. First, conditional statistics relative to the interface position are investigated in a pseudo-Eulerian view (i.e. in a fixed frame relative to the interface position) and in a Lagrangian view. We find that in a pseudo-Eulerian frame of reference, both vorticity fluctuations and mean shear contribute to the vorticity jump at the boundary between irrotational and turbulent regions. In contrast, the Lagrangian evolution of enstrophy along trajectories crossing the entrainment interface is almost exclusively dominated by vorticity fluctuations, at least during the first Kolmogorov time scales after passing the interface. A mapping between distance to the instantaneous interface versus conditional time along the trajectory shows that entraining particles remain initially close to the TNTI and therefore attain lower average enstrophy values. The ratio between the rate of change of enstrophy in the two frames of references defines the local entrainment velocity ${v}_{n} = - (\mathrm{D} {\omega }^{2} / \mathrm{D} t)/ (\partial {\omega }^{2} / \partial {\hat {x} }_{n} )$, where ${\omega }^{2} $ is enstrophy and ${\hat {x} }_{n} $ is the coordinate normal to the TNTI. The quantity ${v}_{n} $ is decomposed into mean and fluctuating components and it is found that mean shear enhances the local entrainment velocity via inviscid and viscous effects. Further, the analysis substantiates that for all investigated flow configurations the local entrainment velocity depends considerably on the geometrical shape of the interface. Depending on the surface shape, different small-scale mechanisms are dominant for the local entrainment process, i.e. viscous effects for convex shapes and vortex stretching for concave shapes, looking from the turbulent region towards the convoluted boundary. Moreover, turbulent fluctuations display a stronger dependence on the shape of the interface than mean shear effects.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3