Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples

Author:

Hogg James,Ahlers Guenter

Abstract

AbstractWe present experimental results for the Reynolds number ${\mathit{Re}}_{U} $ based on the horizontal mean-flow velocity $U$ and for ${\mathit{Re}}_{V} $ based on the root-mean-square horizontal fluctuation velocity $V$ for turbulent Rayleigh–Bénard convection in a cylindrical sample of aspect ratio $\Gamma = 10. 9$ over the Prandtl number range $0. 18\leq \mathit{Pr}\leq 0. 88$. The results were derived from space–time cross-correlation functions of shadowgraph images, using the elliptic approximation of He & Zhang (Phys. Rev. E, vol. 73, 2006, 055303). The data cover the Rayleigh number range from $3\times 1{0}^{5} $ to $2\times 1{0}^{7} $. We find that ${\mathit{Re}}_{U} $ is nearly two orders of magnitude smaller than the values given by the Grossmann–Lohse (GL) model (Grossmann & Lohse, Phys. Rev. E, vol. 66, 2002, 016305) for $\Gamma = 1. 00$ and attribute this difference to averaging caused by lateral random diffusion of the large-scale circulation cells in large-$\Gamma $ samples. For the fluctuations we found ${\mathit{Re}}_{V} = {\tilde {R} }_{0} {\mathit{Pr}}^{\alpha } {\mathit{Ra}}^{\eta } $, with ${\tilde {R} }_{0} = 0. 31$, $\alpha = - 0. 53\pm 0. 11$ and $\eta = 0. 45\pm 0. 03$. That result agrees well with the GL model. The close agreement of the coefficient ${\tilde {R} }_{0} $ must be regarded as a coincidence because the GL model was for $\Gamma = 1. 00$ and for a mean-flow velocity $U$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3