Global stability of flow in symmetric wavy channels

Author:

Rivera-Alvarez Alejandro,Ordonez Juan C.

Abstract

AbstractA two-dimensional global stability analysis is numerically conducted for the basic fully developed steady flow inside symmetric wavy channels. The relative amplitude of channel modulation, defined as ratio of wall modulation amplitude to mean hydraulic diameter, is fixed via the analysis at a large value of 0.15. The relative channel wavelength, defined as the ratio of wall modulation wavelength to mean hydraulic diameter, is varied between 1 and 5. An important feature of the present approach is the detailed consideration of the streamwise conditions imposed on the flow, which allows a tailored restriction of the possible disturbances by modifying the number of channel sections that set the periodicity. Stability of the base flow is determined on the basis of the spectral structure analysis conducted, possible after calculation of the complete eigenvalue spectrum and facilitated by the spectral method employed. Two different destabilization mechanisms have been identified for the geometry studied. For small relative channel wavelengths, with values below approximately 2.7, the flow is destabilized via a Hopf bifurcation produced by a Tollmien–Schlichting wave at Reynolds numbers in the approximated range from 265 to 324. For large relative channel wavelengths, with values above approximately 2.5, a pitchfork bifurcation (or a Hopf bifurcation with very small oscillation frequency), not previously reported in the literature and produced by a symmetric stationary disturbance, is found at Reynolds numbers in the approximated range from 146 to 230.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3