Emulsion flow through a packed bed with multiple drop breakup

Author:

Zinchenko Alexander Z.,Davis Robert H.

Abstract

AbstractPressure-driven squeezing of a concentrated emulsion of deformable drops through a randomly packed granular material is studied by rigorous three-dimensional multidrop–multiparticle simulations at low Reynolds numbers. The drops are comparable in size with granular particles, so the drop phase and the carrier fluid have different permeabilities, and the emulsion cannot be treated as single phase. Squeezing requires significant drop deformation and can meet much resistance, depending on the capillary number $\boldsymbol{Ca}$. The granular material is modelled as a random loose packing (RLP) of many highly-frictional rigid monodisperse spheres in a periodic cell in mechanical equilibrium. Flow simulations for many drops squeezing through the network of solid spheres are performed by an extension of the multipole-accelerated boundary-integral (BI) algorithm of Zinchenko & Davis (J. Comput. Phys., vol. 227, 2008, pp. 7841–7888). A major improvement is robust mesh control on drop surfaces combined with a novel fragmentation algorithm, now allowing for long-time simulations with intricate drop shapes and multiple breakups. A major challenge is that up to $O(1{0}^{5} )$ time steps are required in a simulation for time averaging, and $O(1{0}^{4} )$ boundary elements per surface to sufficiently resolve lubrication and breakups. Such simulations are feasible due to multipole acceleration, with two orders-of-magnitude gain over the standard BI coding. For initial drop-to-particle size ratio 0.51–0.52, emulsion concentration 41–42 % in the available space, and matching viscosities, time- and ensemble-averaged permeabilities of the drop phase and the continuous phase are studied versus $\boldsymbol{Ca}$ for systems of different size (up to 36 particles and 100 drops in a periodic cell). An avalanche of drop breakups observed at sufficiently large $\boldsymbol{Ca}$ does not preclude the permeabilities from reaching a statistical steady state in a feasible simulation time. The critical, system-size-independent $\boldsymbol{Ca}$, when the drop-phase flow effectively stops due to blockage in the pores by capillary forces, is estimated from simulations. For a sample RLP configuration, deep distinctions are found between the flow of concentrated emulsions and single-drop motion.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3