Dense gravity currents moving beneath progressive free-surface water waves

Author:

Robinson T. O.,Eames I.,Simons R.

Abstract

AbstractThe characteristics of dense gravity currents in coastal regions, where free-surface gravity waves are dominant, have yet to be studied in the laboratory. This paper provides a first insight into the dynamics of dense saline gravity currents moving beneath regular progressive free-surface water waves. The gravity currents were generated by releasing a finite volume of saline into a large wave tank with an established periodic wave field. After the initial collapse, the gravity currents propagated horizontally with two fronts, one propagating in the wave direction and the other against the wave direction. The fronts of the gravity currents oscillated with an amplitude and phase that correlated with the orbital velocities within a region close to the bed. To leading order, the overall length of the gravity current was found to be weakly affected by the wave action and the dynamics of the current could be approximated by simply considering the buoyancy of the released fluid. Other characteristics such as the position of the gravity current centre and the shape of the two leading profiles were found to be significantly affected by the wave action. The centre was displaced at constant speed dependent on the second-order wave-induced mean Lagrangian velocity. For long waves, the centre was advected downstream in the direction of wave propagation owing to the dominance of Stokes drift. For short waves, the gravity current centre moved upstream against the wave direction, as under these wave conditions Stokes drift is negligible at the bed. An asymmetry in the shape of the upstream and downstream current heads was observed, with the gravity current front moving against the waves being much thicker and the front steeper, similar to the case of a current moving in a stream.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference43 articles.

1. On the mass transport induced by oscillatory flow in a turbulent boundary layer

2. Fourier J. 1890 Mémoire sur la propagation de la chaleur dans les corps solides, présenté le 21 décembre 1807 à l’Institut national – Nouveau Bulletin des sciences par la Société philomatique de Paris I (6). Paris: Bernard. March 1808. pp. 112–116. Reprinted in ‘Mémoire sur la propagation de la chaleur dans les corps solides’. Joseph Fourier – Œuvres complètes, tome 2. pp. 215–221.

3. Wave- and Wind-Driven Flow in Water of Finite Depth

4. Robinson T. O. 2007 Gravity current in the presence of water waves. PhD thesis, University College London.

5. Coastal Bottom Boundary Layers and Sediment Transport

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3