Interaction of panel flutter with inviscid boundary layer instability in supersonic flow

Author:

Vedeneev Vasily

Abstract

AbstractWe investigate the stability of an elastic plate in supersonic gas flow. This problem has been studied in many papers regarding panel flutter, where uniform flow is usually considered. In this paper, we take the boundary layer on the plate into account and investigate its influence on plate stability. Three problem formulations are studied. First, we investigate the stability of travelling waves in an infinite-length plate. Second, the nature of the instability (absolute or convective instability) is examined. Finally, by using solutions of the first two problems, instability of a long finite-length plate is studied by using Kulikovskii’s global instability criterion. The following results are obtained. All the eigenmodes of a finite-length plate are split into two types, which we call subsonic and supersonic. The influence of the boundary layer on these eigenmodes can be of two kinds. First, for a generalized convex boundary layer profile (typical for accelerating flow), supersonic eigenmodes are stabilized by the boundary layer, whereas subsonic disturbances are destabilized. Second, for a profile with a generalized inflection point (typical for constant and decelerating flows), supersonic eigenmodes are destabilized in a thin boundary layer and stabilized in a thick layer; subsonic eigenmodes are damped. The correspondence between the influence of the boundary layer on panel flutter and the stability of the boundary layer over a rigid wall is established. Examples of stable boundary layer profiles of both types are given.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference44 articles.

1. GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS: Non-Normality and Nonlinearity

2. Lees L. & Lin C. C. 1946 Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA TN 1115.

3. Hydrodynamic Stability

4. High-frequency plate flutter

5. Muhlstein L. Jr , Gaspers P. A. Jr & Riddle D. W. 1968 An experimental study of the influence of the turbulent boundary layer on panel flutter. NASA TN D-4486.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3