On the active feedback control of a swirling flow in a finite-length pipe

Author:

Wang Shixiao,Rusak Zvi,Taylor Steve,Gong Rui

Abstract

AbstractThe physical properties of a recently proposed feedback-stabilization method of a vortex flow in a finite-length straight pipe are studied for the case of a solid-body rotation flow. In the natural case, when the swirl ratio is beyond a certain critical level, linearly unstable modes appear in sequence as the swirl level is increased. Based on an asymptotic long-wave (long-pipe) approach, the global feedback control method is shown to enforce the decay in time of the perturbation’s kinetic energy and thereby quench all of the instability modes for a swirl range above the critical swirl level. The effectiveness of an extended version of this feedback flow control approach is further analysed through a detailed mode analysis of the full linear control problem for a solid-body rotation flow in a finite-length pipe that is not necessarily long. We first rigourously prove the asymptotic decay in time of all modes with real growth rates. We then compute the growth rate and shape of all modes according to the full linearized control problem for swirl levels up to 50 % above the critical level. We demonstrate that the flow is stabilized in the whole swirl range and can be even further stabilized for higher swirl levels. However, the control effectiveness is sensitive to the choice of the feedback control gain. A potentially best range of the gain is identified. An inadequate level of gain, either insufficient or excessive, could lead to a marginal control or failure of the control method at high swirl levels. The robustness of the proposed control law to stabilize both initial waves and continuous inlet flow perturbations and the elimination of the vortex breakdown process are demonstrated through numerical computations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3