Author:
Tran Chuong V.,Yu Xinwei,Blackbourn Luke A. K.
Abstract
AbstractWe study both theoretically and numerically two-dimensional magnetohydrodynamic turbulence at infinite and zero magnetic Prandtl number $\mathit{Pm}$ (and the limits thereof), with an emphasis on solution regularity. For $\mathit{Pm}= 0$, both $\Vert \omega \Vert ^{2} $ and $\Vert j\Vert ^{2} $, where $\omega $ and $j$ are, respectively, the vorticity and current, are uniformly bounded. Furthermore, $\Vert \boldsymbol{\nabla} j\Vert ^{2} $ is integrable over $[0, \infty )$. The uniform boundedness of $\Vert \omega \Vert ^{2} $ implies that in the presence of vanishingly small viscosity $\nu $ (i.e. in the limit $\mathit{Pm}\rightarrow 0$), the kinetic energy dissipation rate $\nu \Vert \omega \Vert ^{2} $ vanishes for all times $t$, including $t= \infty $. Furthermore, for sufficiently small $\mathit{Pm}$, this rate decreases linearly with $\mathit{Pm}$. This linear behaviour of $\nu \Vert \omega \Vert ^{2} $ is investigated and confirmed by high-resolution simulations with $\mathit{Pm}$ in the range $[1/ 64, 1] $. Several criteria for solution regularity are established and numerically tested. As $\mathit{Pm}$ is decreased from unity, the ratio $\Vert \omega \Vert _{\infty } / \Vert \omega \Vert $ is observed to increase relatively slowly. This, together with the integrability of $\Vert \boldsymbol{\nabla} j\Vert ^{2} $, suggests global regularity for $\mathit{Pm}= 0$. When $\mathit{Pm}= \infty $, global regularity is secured when either $\Vert \boldsymbol{\nabla} \boldsymbol{u}\Vert _{\infty } / \Vert \omega \Vert $, where $\boldsymbol{u}$ is the fluid velocity, or $\Vert j\Vert _{\infty } / \Vert j\Vert $ is bounded. The former is plausible given the presence of viscous effects for this case. Numerical results over the range $\mathit{Pm}\in [1, 64] $ show that $\Vert \boldsymbol{\nabla} \boldsymbol{u}\Vert _{\infty } / \Vert \omega \Vert $ varies slightly (with similar behaviour for $\Vert j\Vert _{\infty } / \Vert j\Vert $), thereby lending strong support for the possibility $\Vert \boldsymbol{\nabla} \boldsymbol{u}\Vert _{\infty } / \Vert \omega \Vert \lt \infty $ in the limit $\mathit{Pm}\rightarrow \infty $. The peak of the magnetic energy dissipation rate $\mu \Vert j\Vert ^{2} $ is observed to decrease rapidly as $\mathit{Pm}$ is increased. This result suggests the possibility $\Vert j\Vert ^{2} \lt \infty $ in the limit $\mathit{Pm}\rightarrow \infty $. We discuss further evidence for the boundedness of the ratios $\Vert \omega \Vert _{\infty } / \Vert \omega \Vert $, $\Vert \boldsymbol{\nabla} \boldsymbol{u}\Vert _{\infty } / \Vert \omega \Vert $ and $\Vert j\Vert _{\infty } / \Vert j\Vert $ in conjunction with observation on the density of filamentary structures in the vorticity, velocity gradient and current fields.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献