The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration

Author:

Zhang Keke,Chan Kit H.,Liao Xinhao,Aurnou Jonathan M.

Abstract

AbstractWe investigate the problem of oscillatory flow of a homogeneous fluid with viscosity $\nu $ in a fluid-filled sphere of radius $a$ that rotates rapidly about a fixed axis with angular velocity ${\Omega }_{0} $ and that undergoes weak longitudinal libration with amplitude $\epsilon {\Omega }_{0} $ and frequency $\hat {\omega } {\Omega }_{0} $, where $\epsilon $ is the Poincaré number with $\epsilon \ll 1$ and $\hat {\omega } $ is dimensionless frequency with $0\lt \hat {\omega } \lt 2$. Three different methods are employed in this investigation: (i) asymptotic analysis at small Ekman numbers $E$ defined as $E= \nu / ({a}^{2} {\Omega }_{0} )$; (ii) linear numerical analysis using a spectral method; and (iii) nonlinear direct numerical simulation using a finite-element method. A satisfactory agreement among the three different sets of solutions is achieved when $E\leq 1{0}^{- 4} $. It is shown that the flow amplitude $\vert \boldsymbol{u}\vert $ is nearly independent of both the Ekman number $E$ and the libration frequency $\hat {\omega } $, always obeying the asymptotic scaling $\vert \boldsymbol{u}\vert = O(\epsilon )$ even though various spherical inertial modes are excited by longitudinal libration at different libration frequencies $\hat {\omega } $. Consequently, resonances do not occur in this system even when $\hat {\omega } $ is at the characteristic value of an inertial mode. It is also shown that the pressure difference along the axis of rotation is anomalous: this quantity reaches a sharp peak when $\hat {\omega } $ approaches a characteristic value. In contrast, the pressure difference measured at other places in the sphere, such as in the equatorial plane, and the volume-integrated kinetic energy are nearly independent of both the Ekman number $E$ and the libration frequency $\hat {\omega } $. Absence of resonances in a fluid-filled sphere forced by longitudinal libration is explained through the special properties of the analytical solution that satisfies the no-slip boundary condition and is valid for $E\ll 1$ and $\epsilon \ll 1$.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3