Instantaneous pressure measurements on a spherical grain under threshold flow conditions

Author:

Celik Ahmet O.,Diplas P.,Dancey C. L.

Abstract

AbstractThe aim of this investigation was to experimentally examine the surface pressures and resulting forces on an individual sediment grain whose size is comparable to the scales of the turbulent channel flow in an effort to discern details of the flow/grain interaction. This was accomplished by measuring the pressure fluctuations on the surface of a coarse, fully exposed, spherical grain resting upon a bed of identical grains in open channel turbulent flow. This spherical particle was instrumented with low-range, high-frequency-response pressure transducers to measure the individual surface pressures simultaneously on its front, back, top and bottom. The local flow velocity was measured synchronously with a laser Doppler velocimeter. The flow and sediment are near threshold conditions for entrainment with the channel and particle Reynolds numbers varying between 31 000–39 000 and 330–440 respectively. The emphasis was on determining the characteristics of the flow field with the potential to dislodge a spherical grain under uniform flow conditions as well as in the wake of a circular cylinder placed spanwise across the flow in otherwise fully developed open channel flow. It is concluded that the streamwise velocity near the bed is most directly related to those force events (and associated individual surface pressure distributions) crucial for particle entrainment. The lift force was observed to momentarily reach values which can be consequential for particle stability, although it is poorly correlated with the fluctuating normal velocity component. Turbulence intensity near the bed, rather than being the causative factor for increased force fluctuations, was shown to be an indicator of changes in the average lift force experienced by the grain during the application of extreme drag forces, at least for this particular flow condition (the upstream, spanwise-mounted circular cylinder). This effect is known to alter the sediment transport rates significantly. The characteristics of the temporal durations of flow events about the local maxima in the stagnation pressure, drag and lift forces, using a conditional sampling method, revealed the prevalence of sweep-type near-bed flow events in generating favourable conditions for particle dislodgement, although the dominant feature is the positive streamwise velocity fluctuation, not the normal velocity component. The duration of such events was the highest in the fourth and first quadrants in the $u,w$ plane, inducing high impulses on the grain.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3