Stability and sensitivity analysis in a simplified solid rocket motor flow

Author:

Boyer G.,Casalis G.,Estivalèzes J. L.

Abstract

AbstractThe present article aims at enhancing the computation of the global stability modes of the internal flow of solid rocket motors (SRMs) approximated by the Taylor–Culick solution. This modal approach suffers from the consequences of the non-normality of the global linearized incompressible Navier–Stokes operator, namely the lack of robustness of the eigenvalues that can lead to the computation of pseudo-modes rather than actual eigenmodes. In this respect, the effects of non-normality associated with strongly amplified eigenfunctions are highlighted on a simplified convective–diffusive stability problem with uniformly accelerated base state, the latter property being a typical characteristic of the Taylor–Culick flow. Non-convergence zones for the eigenvalues are exhibited for large Reynolds numbers and are related to the critical sensitivity to disturbances applied to one of the boundary conditions. For this reason, and according to experimental and numerical data related to the stability of simplified SRMs, a global stability analysis is performed assuming that the hydrodynamic fluctuations emerge from a geometrical defect applied at the sidewall. This comes to fix the upstream boundary condition at the abscissa of the sidewall disturbance. The resulting eigenmodes are shown to be discrete, numerically converged, well identified by a finite number of points of undefined phase of the velocity fluctuations. They marginally depend on Reynolds number variations, but are modified by changes on the boundaries location. As in the simplified problem, the inflow boundary condition is the most critical in terms of sensitivity to numerical errors, although not dramatic. Finally, the sensitivity analysis to infinitesimal base flow changes indicates that the variations applied close to the inflow boundary condition induce the largest move of the eigenvalues. In spite of the large non-normal effects induced by the large polynomial growth of the eigenfunctions, this paper shows that discrete instabilities may emerge from a wall defect, in contrast to configurations without such a geometrical perturbation whose dynamics may be rather driven by pseudo-modes.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3