Blood flow in small tubes: quantifying the transition to the non-continuum regime

Author:

Lei Huan,Fedosov Dmitry A.,Caswell Bruce,Karniadakis George Em

Abstract

AbstractIn small vessels blood is usually treated as a Newtonian fluid down to diameters of${\sim }200~\mathrm{\mu} \mathrm{m} $. We investigate the flow of red blood cell (RBC) suspensions driven through small tubes (diameters$10\text{{\ndash}} 150~\mathrm{\mu} \mathrm{m} $) in the range marking the transition from arterioles and venules to the largest capillary vessels. The results of the simulations combined with previous simulations of uniform shear flow and experimental data show that for diameters less than${\sim }100~\mathrm{\mu} \mathrm{m} $the suspension’s stress cannot be described as a continuum, even a heterogeneous one. We employ the dissipative particle dynamics (DPD) model, which has been successfully used to predict human blood bulk viscosity in homogeneous shear flow (Fedosovet al. Proc. Natl Acad. Sci. USA, vol. 108, 2011, pp. 11772–11777). In tube flow the cross-stream stress gradient induces an inhomogeneous distribution of RBCs featuring a centreline cell density peak, and a cell-free layer (CFL) next to the wall. For a neutrally buoyant suspension the imposed linear shear-stress distribution together with the differentiable velocity distribution allow the calculation of the local viscosity across the tube section. The viscosity across the section as a function of the strain rate is found to be essentially independent of tube size for the larger diameters and is determined by the local haematocrit ($H$) and shear rate. Other RBC properties such as asphericity, deformation, and cell-flow orientation exhibit similar dependence for the larger tube diameters. As the tube size decreases below${\sim }100~\mathrm{\mu} \mathrm{m} $in diameter, the viscosity in the central region departs from the large-tube similarity function of the shear rate, since$H$increases significantly towards the centreline. The dependence of shear stress on tube size, in addition to the expected local shear rate and local haematocrit, implies that blood flow in small tubes cannot be described as a heterogeneous continuum. Based on the analysis of the DPD simulations and on available experimental results, we propose a simple velocity-slip model that can be used in conjunction with continuum-based simulations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference38 articles.

1. Predicting human blood viscosity in silico

2. Modeling the flow of dense suspensions of deformable particles in three dimensions

3. Motion, deformation, and interaction of blood cells and plasma during flow through narrow capillary tubes;Gaehtgens;Blood Cells,1980

4. Mechanics of blood flow;Skalak;Trans. ASME: J. Biomech. Engng,1981

5. Statistical Mechanics of Dissipative Particle Dynamics

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3