Author:
Downs Robert S.,White Edward B.
Abstract
AbstractThe cross-flow instability that arises in swept-wing boundary layers has resisted attempts to describe the path from disturbance initiation to transition. Following concerted research efforts, surface roughness and free-stream turbulence have been identified as the leading providers of initial disturbances for cross-flow instability growth. Although a significant body of work examines the role of free-stream turbulence in the cross-flow problem, the data more relevant to the flight environment (turbulence intensities less than 0.07 %) are sparse. A series of recent experiments indicates that variations within this range may affect the initiation or growth of cross-flow instability amplitudes, hindering comparison among results obtained in different disturbance environments. To address this problem, a series of wind tunnel experiments is performed in which the free-stream turbulence intensity is varied between 0.02 % and 0.2 % of free-stream velocity,${U}_{\infty } $. Measurements of the stationary and travelling mode amplitudes are made in the boundary layer of a 1.83 m chord,$45{{}^\circ} $swept-wing model. These results are compared to those of similar experiments at higher turbulence levels to broaden the current knowledge of this portion of the cross-flow problem. It is observed that both free-stream turbulence and surface roughness contribute to the initiation of unsteady disturbances, and that free-stream turbulence affects the development of both stationary and unsteady cross-flow disturbances. For the range tested, enhanced free-stream turbulence advances the transition location except when a subcritically spaced roughness array is employed.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献