Bounds for Euler from vorticity moments and line divergence

Author:

Kerr Robert M.

Abstract

AbstractThe inviscid growth of a range of vorticity moments is compared using Euler calculations of anti-parallel vortices with a new initial condition. The primary goal is to understand the role of nonlinearity in the generation of a new hierarchy of rescaled vorticity moments in Navier–Stokes calculations where the rescaled moments obey ${D}_{m} \geq {D}_{m+ 1} $, the reverse of the usual ${\Omega }_{m+ 1} \geq {\Omega }_{m} $ Hölder ordering of the original moments. Two temporal phases have been identified for the Euler calculations. In the first phase the $1\lt m\lt \infty $ vorticity moments are ordered in a manner consistent with the new Navier–Stokes hierarchy and grow in a manner that skirts the lower edge of possible singular growth with ${ D}_{m}^{2} \rightarrow \sup \vert \boldsymbol{\omega} \vert \sim A_{m}{({T}_{c} - t)}^{- 1} $ where the ${A}_{m} $ are nearly independent of $m$. In the second phase, the new ${D}_{m} $ ordering breaks down as the ${\Omega }_{m} $ converge towards the same super-exponential growth for all $m$. The transition is identified using new inequalities for the upper bounds for the $- \mathrm{d} { D}_{m}^{- 2} / \mathrm{d} t$ that are based solely upon the ratios ${D}_{m+ 1} / {D}_{m} $, and the convergent super-exponential growth is shown by plotting $\log (\mathrm{d} \log {\Omega }_{m} / \mathrm{d} t)$. Three-dimensional graphics show significant divergence of the vortex lines during the second phase, which could be what inhibits the initial power-law growth.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lagrangian dynamics and regularity of the spin Euler equation;Journal of Fluid Mechanics;2024-04-24

2. Searching for Singularities in Navier–Stokes Flows Based on the Ladyzhenskaya–Prodi–Serrin Conditions;Journal of Nonlinear Science;2022-09-06

3. Systematic search for extreme and singular behaviour in some fundamental models of fluid mechanics;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-04-25

4. Potential anisotropic finite-time singularity in the three-dimensional axisymmetric Euler equations;Physical Review Fluids;2022-03-31

5. Vortex Reconnection and Turbulence Cascade;Annual Review of Fluid Mechanics;2022-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3