Optimal perturbations of gravitationally unstable, transient boundary layers in porous media

Author:

Daniel Don,Tilton Nils,Riaz Amir

Abstract

AbstractWe study the linear stability of gravitationally unstable, transient, diffusive boundary layers in porous media using non-modal stability theory. We first perform a classical optimization procedure, using an adjoint-based method, to obtain the perturbations at the initial time $t= {t}_{p} $ that have a maximum amplification at a final time $t= {t}_{f} $. We then investigate the sensitivity of the optimal perturbations to the initial time, ${t}_{p} $, and the final time, ${t}_{f} $, as well as different measures of perturbation amplification. Due to the transient nature of the base state, we demonstrate that there is an optimal initial perturbation time, ${ t}_{p}^{o} $. By rescaling the problem, we develop analytical relationships for the optimal initial time and wavenumber in terms of aquifer properties. We also demonstrate that the classical optimization procedure essentially recovers the dominant perturbation structures predicted by a quasi-steady modal analysis. Although the classical optimal perturbations are mathematically valid, we observe that due to physical constraints, they are unlikely to reflect analogous laboratory experiments. Therefore, we propose a modified optimization procedure (MOP) that constrains the optimization to physically admissible initial perturbation fields. We compare the results of the classical and modified optimization procedures with quasi-steady modal analyses and initial value problems commonly used in the literature. Finally, we validate the predictions of the modified optimization scheme by performing direct numerical simulations (DNS) that emulate the onset of convection in physical systems.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3