Capillary-wave scattering from an infinitesimal barrier and dissipation at dynamic contact lines

Author:

Zhang Likun,Thiessen David B.

Abstract

AbstractThe interaction of pure capillary waves with boundaries that constrain the contact line are of interest for problems involving liquids contained by minimal solid contact for applications in low gravity and at small scales in normal gravity. Time-harmonic capillary waves on a liquid cylinder axially incident on and scattered by an infinitesimal concentric barrier are considered theoretically in the inviscid limit. The barrier is taken to be infinitesimally small in the sense that its immersed depth is of the order of the amplitude of contact-line motion. Edge conditions on the barrier that are investigated include a pinned contact line and a moving contact line by an effective-slip model, assuming that contact-line velocity is proportional to the deviation of the contact angle from equilibrium multiplied by a slip coefficient. The incident waves are taken to be those with wavelengths short enough to be stable on the liquid cylinder. Scattering and dissipation by the contact line are determined as a function of wavenumber and slip coefficient. Zero transmission is approached in the long-wave limit. The short-wave limit agrees with established results for the scattering of planar gravity–capillary waves on a deep liquid by a surface-piercing vertical barrier in the limit of zero barrier depth and zero gravity. We find that contact-line dissipation at the barrier is a maximum for incident waves whose phase speed is of the order of the slip coefficient, which is interpreted as an effect of impedance matching. Transmission past an infinitesimal barrier is found to be low over all parameter space, illustrating the importance of contact-line constraints.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. THE INFLUENCE OF PLATE SURFACE INHOMOGENEITY ON THE OSCILLATIONS OF THE CONFINED GAS BUBBLE;Interfacial Phenomena and Heat Transfer;2024

2. The effect of side walls on the stability of falling films;Journal of Fluid Mechanics;2023-06-07

3. Dynamics of a clamped drop under translational vibrations;Computational Continuum Mechanics;2023

4. Influence of substrate properties on a fluid drop’s free translational oscillations;Journal of Physics: Conference Series;2022-07-01

5. The deformed oblate drop’s free translational oscillations;Journal of Physics: Conference Series;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3