Effect of wall heating on turbulent boundary layers with temperature-dependent viscosity

Author:

Lee Jin,Yoon Jung Seo,Jin Sung Hyung,Zaki Tamer A.

Abstract

AbstractDirect numerical simulations (DNS) of turbulent boundary layers over isothermally heated walls were performed, and the effect of viscosity stratification on the turbulence statistics and skin friction were investigated. An empirical relation for temperature-dependent viscosity for water was adopted. Based on the free-stream temperature (30°C), two wall temperatures (70°C and 99°C) were selected. In the heated flows, the turbulence energy diminishes in the buffer layer, but increases near the wall. The reduction in turbulence kinetic energy in the buffer layer is accompanied by smaller levels of Reynolds shear stresses and, hence, weaker turbulence production. The enhanced turbulence energy near the wall is attributed to enhanced transfer of energy via additional diffusion-like terms due to the viscosity stratification. Despite the lower fluid viscosity near the wall, dissipation is also increased owing to the augmented near-wall fine-scale motion. Wall heating results in reduction in the skin-friction coefficient by up to 26 %. An evaluation of the different contributions to the skin friction demonstrates that drag reduction is primarily due to the changes in the Reynolds shear stresses across the boundary layer. Quadrant and octant analyses showed that ejections (Q2) and sweeps (Q4) are significantly reduced, a result further supported by an examination of outer vortical structures from linear stochastic estimation of the ejection events and spanwise vortices.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference47 articles.

Cited by 109 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3