Author:
Borden Zachary,Meiburg Eckart
Abstract
AbstractExisting control-volume models for predicting the front velocity of internal bores enforce the conservation of mass and streamwise momentum, but not vertical momentum. Instead, they usually invoke an empirical assumption relating the up- and downstream energy fluxes to obtain an additional equation required for determining the pressure jump across a bore. The present investigation develops a control-volume model for internal bores on the basis of mass and momentum conservation alone, without the need for considering energy. This is accomplished by combining the streamwise and vertical momentum equations to obtain a vorticity relation that no longer involves pressure. Hence, this vorticity equation, in combination with the conservation of mass, is sufficient for evaluating the bore velocity. The energy loss across the bore can then be predicted by the streamwise energy equation and compared to the assumptions underlying earlier models. The flux of vorticity across the internal bore predicted by the new model is seen to be in close agreement with direct numerical simulation results. Any discrepancies with experimentally measured bore velocities are shown to be due to the effects of downstream mixing.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献