Rigid ring-shaped particles that align in simple shear flow

Author:

Singh Vikram,Koch Donald L.,Stroock Abraham D.

Abstract

AbstractMost rigid, torque-free, low-Reynolds-number, axisymmetric particles undergo a time-periodic tumbling motion in a simple shear flow, with their axes of symmetry following a set of closed Jeffery orbits. We have identified a class of rigid, ring-like particles whose axes of symmetry instead reach a permanent alignment near the velocity gradient direction with the plane of the particle aligning near the flow–vorticity plane. An asymptotic analysis for small particle aspect ratio (ratio of length parallel to the axis of symmetry to diameter perpendicular to the axis) shows that an appropriate asymmetry of the ring cross-section with a thinner outer edge and thicker inner edge leads to a tendency to rotate in a direction opposite to the vorticity; this tendency can balance the usual rotation rate associated with the finite thickness of the particle. Boundary integral computations for finite particle aspect ratios are used to determine the conditions of aspect ratio and degree of asymmetry that lead to the aligning behaviour and the final orientation of the axis of symmetry of the aligned particles. The aligning particle follows an equation of motion similar to the Leslie–Erickson equation for the director of a small-molecule nematic liquid crystal. However, whereas the alignment of the director arises from intermolecular interactions, the ring-like particle aligns solely due to its intrinsic rotational motion in a low-Reynolds-number flow.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3