Author:
Kunnen R. P. J.,Clercx H. J. H.,van Heijst G. J. F.
Abstract
AbstractTurbulent rotating convection is usually studied in a cylindrical geometry, as this is its most convenient experimental realization. In our previous work (Kunnen et al., J. Fluid Mech., vol. 688, 2011, pp. 422–442) we studied turbulent rotating convection in a cylinder with the emphasis on the boundary layers. A secondary circulation with a convoluted spatial structure has been observed in mean velocity plots. Here we present a linear boundary-layer analysis of this flow, which leads to a model of the circulation. The model consists of two independent parts: an internal recirculation within the sidewall boundary layer, and a bulk-driven domain-filling circulation. Both contributions exhibit the typical structure of the Stewartson boundary layer near the sidewall: a sandwich structure of two boundary layers of typical thicknesses ${E}^{1/ 4} $ and ${E}^{1/ 3} $, where $E$ is the Ekman number. Although the structure of the bulk-driven circulation may change considerably depending on the Ekman number, the boundary-layer recirculation is present at all Ekman numbers in the range $0. 72\times 1{0}^{- 5} \leq E\leq 5. 76\times 1{0}^{- 5} $ considered here.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献