Solutal-convection regimes in a two-dimensional porous medium

Author:

Slim Anja C.

Abstract

AbstractWe numerically characterize the temporal regimes for solutal convection from almost first contact to high dissolved solute concentration in a two-dimensional ideal porous layer for Rayleigh numbers $\mathcal{R}$ between $100$ and $5\times 10^4$. The lower boundary is impenetrable. The upper boundary is saturated with dissolved solute and either impermeable or partially permeable to fluid flow. In the impermeable case, initially there is pure diffusion of solute away from the upper boundary, followed by the birth and growth of convective fingers. Eventually fingers interact and merge, generating complex downwelling plumes. Once the inter-plume spacing is sufficient, small protoplumes reinitiate on the boundary layer and are swept into the primary plumes. The flow is now in a universal regime characterized by a constant (dimensionless) dissolution flux $F=0.017$ (the rate at which solute dissolves from the upper boundary). The horizontally averaged concentration profile stretches as a simple self-similar wedge beneath a diffusive horizontal boundary layer. Throughout, the plume width broadens proportionally to $\sqrt{t}$, where $t$ is (dimensionless) time. The above behaviour is parameter independent; the Rayleigh number only controls when transition occurs to a final $\mathcal{R}$-dependent shut-down regime. For the constant-flux and shut-down regimes, we rigourously derive upscaled equations connecting the horizontally averaged concentration, vertical advective flux and plume widths. These are partially complete; a universal expression for the plume width remains elusive. We complement these governing equations with phenomenological boundary conditions based on a marginally stable diffusive boundary layer at the top and zero advective flux at the bottom. Making appropriate approximations in each regime, we find good agreement between predictions from this model and simulated results for both solutal and thermal convection. In the partially permeable upper boundary case, fluid from the convecting layer can penetrate an overlying separate-phase-solute bearing layer where it immediately saturates. The regime diagram remains almost the same as for the impermeable case, but the dissolution flux is significantly augmented. Our work is motivated by dissolution of carbon dioxide relevant to geological storage, and we conclude with a simple flux parameterization for inclusion in gravity current models and suggest that the upscaled equations could lay the foundation for accurate inclusion of dissolution in reservoir simulators.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3