Author:
Falcucci G.,Jannelli E.,Ubertini S.,Succi S.
Abstract
AbstractIn this paper direct numerical evidence of flow-induced incipient cavitation is presented through lattice Boltzmann simulations of multiphase flows with a non-ideal thermodynamic equation of state. Cavitation emerges spontaneously as a result of the underlying non-ideal interactions, with no need for any modelling criteria based on the fluid variables, such as pressure or stress tensor. The onset of cavitation is well captured by Joseph’s minimum tension criteria, (Joseph, J. Fluid Mech., vol. 366, 1998, pp. 367–378; Dabiri, Sirignano & Joseph, Phys. Fluids, vol. 19, 2007, 072112), complemented with surface tension corrections, as proposed by Brennen (Cavitation and Bubble Dynamics, Oxford University Press, 1995). The simulations also show that the cavitation number (${C}_{N} $) proves to be a poor predictor of the onset of cavitation. Finally, strong dependence of the bubble morphology on the surface tension is also highlighted.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献