Quantum vortex dynamics under the tangent representation of the local induction approximation

Author:

Van Gorder Robert A.

Abstract

AbstractWe derive the local induction approximation (LIA) for a quantum vortex filament in the arclength coordinate frame where the tangent vector is the unknown function. The equation for the tangent vector to the filament is then converted to a potential form, which ends up being a type of nonlinear Schrödinger equation that governs the tangential LIA model (T-LIA). Such a formulation was previously derived by Umeki for the standard fluid model (in the absence of superfluid friction terms). While it is challenging to generalize many of the exact solutions found for the standard LIA to the quantum LIA model, we demonstrate that the T-LIA model facilitates this generalization nicely. Indeed, under the T-LIA model, we are able to construct a variety of solutions. The Hasimoto solution related to elastica is one of the fundamental solutions present for the standard fluid model; however, using the T-LIA model, we are able to demonstrate the existence of such a solution, thereby extending the Hasimoto solution to the superfluid case. In the zero-temperature limit, purely self-similar solutions are shown to exist for the T-LIA model. As the superfluid warms (so that the influence of the normal flow is no longer negligible), the analogue to the self-similar solution is a new class of solutions, which depend on the similarity variable as well as a time-dependent additive scaling. In other words, the self-similar structures gradually deform as the magnitude of the normal-fluid velocity increases, which makes complete physical sense. When dealing with small deviations from the central axis of alignment, we can describe such solutions analytically. There exists a family of helical vortex filaments in the presence of a normal fluid impinging on the vortex, in complete agreement with the previously studied results for the LIA model. Finally, a number of soliton solutions are shown to exist in different regimes of the T-LIA model.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3