The quasi-geostrophic theory of the thermal shallow water equations

Author:

Warneford Emma S.,Dellar Paul J.

Abstract

AbstractThe thermal shallow water equations provide a depth-averaged description of motions in a fluid layer that permits horizontal variations in material properties. They typically arise through an equivalent barotropic approximation of a two-layer system, with a spatially varying density contrast due to an evolving temperature field in the active layer. We formalize a previous derivation of the quasi-geostrophic (QG) theory of these equations, by performing a direct asymptotic expansion for small Rossby number. We then present a second derivation as the small Rossby number limit of a balanced model that projects out high-frequency dynamics due to inertia-gravity waves. This latter derivation has wider validity, not being restricted to mid-latitude $\beta $-planes. We also derive their local energy conservation equation from the QG limit of a thermal shallow water pseudo-energy conservation equation. This derivation involves the ageostrophic correction to the leading-order geostrophic velocity that is eliminated in the usual derivation of a closed evolution equation for the QG potential vorticity. Finally, we derive the non-canonical Hamiltonian structure of the thermal QG equations from a decomposition in Rossby number of a pseudo-energy and Poisson bracket for the thermal shallow water equations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3