Abstract
AbstractThe rotating-disk boundary layer is generally considered as an example of a flow that displays a robust transition from laminar to turbulent régimes. By taking into account disks of finite radius, Healey (J. Fluid Mech., vol. 663, 2010, pp. 148–159) has predicted a stabilizing effect of the boundary condition, but Imayama et al. (J. Fluid Mech., vol. 716, 2013, pp. 638–657) were unable to confirm this prediction experimentally. Following these contradictory results, the present experimental investigation revisits the rotating-disk boundary layer, without any artificially imposed excitation, and studies in further detail the dynamics prevailing in the region closely surrounding the edge of the disk, as well as the flow beyond the disk. Azimuthal mean velocities and fluctuation amplitudes are recorded with small steps in radial and axial directions for a wide range of disk sizes. An objective criterion is used to define the onset of fluctuations consistently over a large data set. Two distinct mechanisms for the onset of fluctuations are identified. In particular, it is found that the flow over the edge of the disk acts as a strong source of fluctuations. Explanations and suggestions for a possible reconciliation of previous studies are given.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献