Travelling convectons in binary fluid convection

Author:

Mercader Isabel,Batiste Oriol,Alonso Arantxa,Knobloch Edgar

Abstract

AbstractBinary fluid mixtures with a negative separation ratio heated from below exhibit steady spatially localized states called convectons for supercritical Rayleigh numbers. With no-slip, fixed-temperature, no-mass-flux boundary conditions at the top and bottom stationary odd- and even-parity convectons fall on a pair of intertwined branches connected by branches of travelling asymmetric states. In appropriate parameter regimes the stationary convectons may be stable. When the boundary condition on the top is changed to Newton’s law of cooling the odd-parity convectons start to drift and the branch of odd-parity convectons breaks up and reconnects with the branches of asymmetric states. We explore the dependence of these changes and of the resulting drift speed on the associated Biot number using numerical continuation, and compare and contrast the results with a related study of the Swift–Hohenberg equation by Houghton & Knobloch (Phys. Rev.E, vol. 84, 2011, art. 016204). We use the results to identify stable drifting convectons and employ direct numerical simulations to study collisions between them. The collisions are highly inelastic, and result in convectons whose length exceeds the sum of the lengths of the colliding convectons.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collisions of localized patterns in a nonvariational Swift-Hohenberg equation;Physical Review E;2023-06-27

2. Stationary broken parity states in active matter models;Physical Review E;2023-06-23

3. Numerical solution of nonstationary problem for convection of binary mixture in horizontal layer;Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki;2023-06

4. Interactions Between Coupled Transfer and Gravity: Nonlinear Rayleigh-Bénard Convection;Coupled Heat and Mass Transfer in Binary Mixtures at Supercritical Pressures;2022

5. Patterns, localized structures and fronts in a reduced model of clonal plant growth;Physica D: Nonlinear Phenomena;2020-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3