Abstract
AbstractThe velocity potential is derived for a transient source of arbitrary strength undergoing arbitrary three-dimensional motion. The initially quiescent fluid of infinite depth is assumed to be inviscid, incompressible and homogeneous. The upper surface of the fluid is covered by a thin layer of elastic material of uniform density with lateral stress. The linearized initial boundary-value problem is formulated within the framework of the potential-flow theory, and the Laplace transform technique is employed to obtain the solution. The potential of a time-harmonic source with forward speed is obtained as a particular case. The far-field wave motion at long time is determined via the method of stationary phase. The problems of radiation (surge, sway and heave) of the flexural–gravity waves by a submerged sphere advancing at constant forward speed are investigated. The method of multipole expansions is used. Numerical results are obtained for the wave-making resistance and lift, added-mass and damping coefficients. The effects of an ice sheet and broken ice on the hydrodynamic loads are discussed in detail.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献