Unsteady three-dimensional sources in deep water with an elastic cover and their applications

Author:

Sturova Izolda V.

Abstract

AbstractThe velocity potential is derived for a transient source of arbitrary strength undergoing arbitrary three-dimensional motion. The initially quiescent fluid of infinite depth is assumed to be inviscid, incompressible and homogeneous. The upper surface of the fluid is covered by a thin layer of elastic material of uniform density with lateral stress. The linearized initial boundary-value problem is formulated within the framework of the potential-flow theory, and the Laplace transform technique is employed to obtain the solution. The potential of a time-harmonic source with forward speed is obtained as a particular case. The far-field wave motion at long time is determined via the method of stationary phase. The problems of radiation (surge, sway and heave) of the flexural–gravity waves by a submerged sphere advancing at constant forward speed are investigated. The method of multipole expansions is used. Numerical results are obtained for the wave-making resistance and lift, added-mass and damping coefficients. The effects of an ice sheet and broken ice on the hydrodynamic loads are discussed in detail.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3