Centred and staggered arrangements of tidal turbines

Author:

Draper S.,Nishino T.

Abstract

AbstractIn this paper we extend linear momentum actuator disc theory to consider two rows of tidal turbines placed in a centred or staggered arrangement. The extensions assume a streamwise spacing between rows that is sufficient for pressure equalization, but is not too large for significant mixing of the upstream turbine wake before the second row. We first consider a given number of turbines in a tidal channel; in this case the average power for a staggered arrangement over two rows is found to be higher than that for a centred arrangement, but lower than can be obtained by placing all turbines side-by-side in one row (if all turbines have the same local resistance). Furthermore, staggered arrangements extract power more efficiently than centred arrangements, but less efficiently than a single row with the same number of turbines, and this has implications for ranking different arrangements of tidal turbines. We also use the extended actuator disc models (together with an argument of scale separation) to consider some example arrangements of tidal turbines in laterally unconfined flow. Specifically, it is shown that locally staggering a fixed number of turbines in an array to form a tidal farm generates less power than placing the same number of turbines side-by-side. However, if more than one row of turbines is adopted (perhaps to keep the farm spatially compact) then the optimum turbine spacing within a row increases significantly with addition of a second row. This trend suggests that multi-row tidal turbine farms would require wide turbine spacing within each row to maximize the power per turbine, similarly to existing offshore wind farms.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference20 articles.

1. Houlsby G. T. , Draper S. & Oldfield M. L. G. 2008 Application of linear momentum actuator disc theory to open channel flow. Tech. Rep. OUEL 2296/08. University of Oxford.

2. Two-scale dynamics of flow past a partial cross-stream array of tidal turbines

3. The energetics of large tidal turbine arrays

4. Tuning tidal turbines in-concert to maximise farm efficiency

5. A free-surface and blockage correction for tidal turbines

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3