Author:
Bourgeois J. A.,Noack B. R.,Martinuzzi R. J.
Abstract
AbstractWe experimentally investigate the three-dimensional wake behind a finite wall-mounted square cylinder at $\mathit{Re}= 12\hspace{0.167em} 000$ and aspect ratio of 4. Focus is placed on the base flow and oscillatory fluctuation. Time-resolved three-dimensional velocity fields are constructed from high-frame-rate particle image velocimetry (PIV) and simultaneously recorded surface pressure measurements. All three velocity components are resolved in a rectangular near-wake region by two orthogonal dense arrays of parallel PIV planes. A key enabler is a generalized phase average incorporating a slowly varying base flow, a variable oscillation amplitude and higher harmonics. These generalizations reduce the instantaneous residual 30 % below those of a traditional phase average. Moreover, the resolved variations reveal analytical constraints of the mean flow and oscillation levels, such as the mean-field paraboloid. The proposed methodology for generalized phase averaging and for construction of three-dimensional velocity fields from two-dimensional PIV data is applicable to a large class of turbulent flows with oscillatory dynamics.
Publisher
Cambridge University Press (CUP)
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献