XLIII.—On the Gravitational Mass of a System of Particles

Author:

Clark G. L.

Abstract

SummaryIn classical mechanics the mass of a system of gravitating particles can be denned to be the mass of an equivalent particle which gives the same field at great distances, or alternatively the mass can be defined by means of Gauss' Theorem. Reference to the former procedure was made by Eddington and Clark (1938) in a discussion on the problem of n bodies. The relativistic extension of Gauss' Theorem has been investigated by Whittaker (1935) for a particular form of the line-element and for more general fields by Ruse (1935). The latter, treating the problem from a purely geometrical point of view, expressed the integral of the normal component of the gravitational force as the sum of two volume integrals. The physical significance of one of these integrals was quite obvious but the meaning of the other was far from clear. In this paper the terms in Ruse's result are examined as far as the order m2 in the case of a fundamental observer at rest and the 1938 discussion modified to bring the two investigations into line. It is concluded that the surface integral of the normal component of the gravitational force taken over an infinite sphere is –4π × the energy of the system.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3