Abstract
AbstractIn this paper, we study the problem of formal verification for Answer Set Programming (ASP), namely, obtaining a formal proof showing that the answer sets of a given (non-ground) logic program P correctly correspond to the solutions to the problem encoded by P, regardless of the problem instance. To this aim, we use a formal specification language based on ASP modules, so that each module can be proved to capture some informal aspect of the problem in an isolated way. This specification language relies on a novel definition of (possibly nested, first order) program modules that may incorporate local hidden atoms at different levels. Then, verifying the logic program P amounts to prove some kind of equivalence between P and its modular specification.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Reference28 articles.
1. 28. Pearce, D. and Valverde, A. 2008. Quantified equilibrium logic and foundations for answer set programs. In Logic Programming, 24th International Conference, ICLP 2008, Udine, Italy, December 9-13 2008, Proceedings, de la Banda, M. G. and Pontelli, E. , Eds. Lecture Notes in Computer Science, vol. 5366. Springer, 546–560.
2. 16. Lierler, Y. 2019. Strong equivalence and program’s structure in arguing essential equivalence between first-order logic programs. In Proceedings of the 21st International Symposium on Practical Aspects of Declarative Languages (PADL).
3. 27. Pearce, D. and Valverde, A. 2004. Synonymous theories in answer set programming and equilibrium logic. In Proceedings of the 16th European Conference on Artificial Intelligence. ECAI’04. IOS Press, Amsterdam, The Netherlands, The Netherlands, 388–392.
4. Forgetting auxiliary atoms in forks
5. 3. Buddenhagen, M. and Lierler, Y. 2015. Performance tuning in answer set programming. In Proceedings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献