Abstract
AbstractThe Decision Model and Notation (DMN) is a recent Object Management Group standard for the elicitation and representation of decision models and for managing their interconnection with business processes. DMN builds on the notion of decision tables and their combination into more complex decision requirements graphs (DRGs), which bridge between business process models and decision logic models. DRGs may rely on additional, external business knowledge models, whose functioning is not part of the standard. In this work, we consider one of the most important types of business knowledge, namely, background knowledge that conceptually accounts for the structural aspects of the domain of interest, and propose decision knowledge bases (DKBs), which semantically combine DRGs modeled in DMN, and domain knowledge captured by means of first-order logic with datatypes. We provide a logic-based semantics for such an integration, and formalize different DMN reasoning tasks for DKBs. We then consider background knowledge formulated as a description logic (DL) ontology with datatypes, and show how the main verification tasks for DMN in this enriched setting can be formalized as standard DL reasoning services and actually carried out in ExpTime. We discuss the effectiveness of our framework on a case study in maritime security.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献