Disjunctive datalog with existential quantifiers: Semantics, decidability, and complexity issues

Author:

ALVIANO MARIO,FABER WOLFGANG,LEONE NICOLA,MANNA MARCO

Abstract

AbstractDatalog is one of the best-known rule-based languages, and extensions of it are used in a wide context of applications. An important Datalog extension is Disjunctive Datalog, which significantly increases the expressivity of the basic language. Disjunctive Datalog is useful in a wide range of applications, ranging from Databases (e.g., Data Integration) to Artificial Intelligence (e.g., diagnosis and planning under incomplete knowledge). However, in recent years an important shortcoming of Datalog-based languages became evident, e.g. in the context of data-integration (consistent query-answering, ontology-based data access) and Semantic Web applications: The language does not permit any generation of and reasoning with unnamed individuals in an obvious way. In general, it is weak in supporting many cases of existential quantification. To overcome this problem, Datalog has recently been proposed, which extends traditional Datalog by existential quantification in rule heads. In this work, we propose a natural extension of Disjunctive Datalog and Datalog, called Datalog∃,˅, which allows both disjunctions and existential quantification in rule heads and is therefore an attractive language for knowledge representation and reasoning, especially in domains where ontology-based reasoning is needed. We formally define syntax and semantics of the language Datalog∃,˅, and provide a notion of instantiation, which we prove to be adequate for Datalog∃,˅. A main issue of Datalog and hence also of Datalog∃,˅ is that decidability is no longer guaranteed for typical reasoning tasks. In order to address this issue, we identify many decidable fragments of the language, which extend, in a natural way, analog classes defined in the non-disjunctive case. Moreover, we carry out an in-depth complexity analysis, deriving interesting results which range from Logarithmic Space to Exponential Time.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stable Model Semantics for Guarded Existential Rules and Description Logics: Decidability and Complexity;Journal of the ACM;2021-10-31

2. An Introduction to Answer Set Programming and Some of Its Extensions;Reasoning Web. Declarative Artificial Intelligence;2020

3. Fast Query Answering over Existential Rules;ACM Transactions on Computational Logic;2019-04-30

4. ASP Based Generation of Information Terms for Constructive ɛℒ;Fundamenta Informaticae;2018-07-02

5. Ontological Multidimensional Data Models and Contextual Data Quality;Journal of Data and Information Quality;2018-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3