Abstract
AbstractIn this paper we propose an extension of Answer Set Programming (ASP) to deal with (possibly partial) evaluable functions. To this aim, we start from the most general logical counterpart of ASP, Quantified Equilibrium Logic (QEL), and propose a variant QEL=ℱwhere the set of functions is partitioned into Herbrand functions (orconstructors) and evaluable functions (oroperations). We show how this extension has a direct connection to Scott'sLogic of Existence, and introduce several useful derived operators, some of them directly borrowed from Scott's formalisation. Using this general framework for arbitrary theories, we proceed to focus on a syntactic subclass that corresponds to normal logic programs with evaluable functions and equality. We provide a translation of this class into function-free normal programs and consider a safety condition so that the resulting program is also safe, under the usual meaning in ASP. Finally, we also establish a formal comparison to Lin and Wang's approach (FASP) dealing with evaluable total functions.
Publisher
Cambridge University Press (CUP)
Subject
Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献