A logic programming approach to predict effective compiler settings for embedded software

Author:

BLACKMORE CRAIG,RAY OLIVER,EDER KERSTIN

Abstract

AbstractThis paper introduces a new logic-based method for optimising the selection of compiler flags on embedded architectures. In particular, we use Inductive Logic Programming (ILP) to learn logical rules that relate effective compiler flags to specific program features. Unlike earlier work, we aim to infer human-readable rules and we seek to develop a relational first-order approach which automatically discovers relevant features rather than relying on a vector of predetermined attributes. To this end we generated a data set by measuring execution times of 60 benchmarks on an embedded system development board and we developed an ILP prototype which outperforms the current state-of-the-art learning approach in 34 of the 60 benchmarks. Finally, we combined the strengths of the current state of the art and our ILP method in a hybrid approach which reduced execution times by an average of 8% and up to 50% in some cases.

Publisher

Cambridge University Press (CUP)

Subject

Artificial Intelligence,Computational Theory and Mathematics,Hardware and Architecture,Theoretical Computer Science,Software

Reference12 articles.

1. LLVM 2015. http://llvm.org/. [Accessed 02/07/2015].

2. Inductive Logic Programming: Theory and methods

3. Fursin G. , Miranda C. , Temam O. , Namolaru M. , Yom-Tov E. , Zaks A. , et al. 2008. Milepost GCC: machine learning based research compiler. In GCC Summit.

4. Collective Benchmark 2012. http://ctuning.org/cbench/ [Accessed 05/03/15].

5. Milepost GCC: Machine Learning Enabled Self-tuning Compiler

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Lost In Translation: Exposing Hidden Compiler Optimization Opportunities;The Computer Journal;2020-08-07

2. A Survey on Compiler Autotuning using Machine Learning;ACM Computing Surveys;2019-09-30

3. Less is More;Proceedings of the 21st International Workshop on Software and Compilers for Embedded Systems;2018-05-28

4. Energy Transparency for Deeply Embedded Programs;ACM Transactions on Architecture and Code Optimization;2017-03-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3