Physiological Responses of Medical Team Members to a Simulated Emergency in Tropical Field Conditions

Author:

Brearley Matt B.,Heaney Michael F.,Norton Ian N.

Abstract

AbstractIntroductionResponses to physical activity while wearing personal protective equipment in hot laboratory conditions are well documented. However less is known of medical professionals responding to an emergency in hot field conditions in standard attire. Therefore, the purpose of this study was to assess the physiological responses of medical responders to a simulated field emergency in tropical conditions.MethodsTen subjects, all of whom were chronically heat-acclimatized health care workers, volunteered to participate in this investigation. Participants were the medical response team of a simulated field emergency conducted at the Northern Territory Emergency Services training grounds, Yarrawonga, NT, Australia. The exercise consisted of setting up a field hospital, transporting patients by stretcher to the hospital, triaging and treating the patients while dressed in standard medical response uniforms in field conditions (mean ambient temperature of 29.3°C and relative humidity of 50.3%, apparent temperature of 27.9°C) for a duration of 150 minutes. Gastrointestinal temperature was transmitted from an ingestible sensor and used as the index of core temperature. An integrated physiological monitoring device worn by each participant measured and logged heart rate, chest temperature and gastrointestinal temperature throughout the exercise. Hydration status was assessed by monitoring the change between pre- and post-exercise body mass and urine specific gravity (USG).ResultsMean core body temperature rose from 37.5°C at the commencement of the exercise to peak at 37.8°C after 75 minutes. The individual peak core body temperature was 38.5°C, with three subjects exceeding 38.0°C. Subjects sweated 0.54 L per hour and consumed 0.36 L of fluid per hour, resulting in overall dehydration of 0.7% of body mass at the cessation of exercise. Physiological strain index was indicative of little to low strain.ConclusionsThe combination of the unseasonably mild environmental conditions and moderate work rates resulted in minimal heat storage during the simulated exercise. As a result, low sweat rates manifested in minimal dehydration. When provided with access to fluids in mild environmental conditions, chronically heat-acclimatized medical responders can meet their hydration requirements through ad libitum fluid consumption. Whether such an observation is replicated under a harsher thermal load remains to be investigated.BrearleyMB, HeaneyMF, NortonIN. Physiological responses of medical team members to a simulated emergency in tropical field conditions. Prehosp Disaster Med. 2013;28(2):1-6.

Publisher

Cambridge University Press (CUP)

Subject

Emergency Nursing,Emergency Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3