Abstract
AbstractMauldin [15] proved that there is an analytic set, which cannot be represented by
$B\cup X$
for some Borel set B and a subset X of a
$\boldsymbol{\Sigma }^0_2$
-null set, answering a question by Johnson [10]. We reprove Mauldin’s answer by a recursion-theoretical method. We also give a characterization of the Borel generated
$\sigma $
-ideals having approximation property under the assumption that every real is constructible, answering Mauldin’s question raised in [15].
Publisher
Cambridge University Press (CUP)