Discovering fire events in the HAS1 settlement on the Dhofar coast (Oman) by a multi-methodological study of mollusk shells

Author:

Crippa GaiaORCID,Lischi Silvia,Chiari Andrea,Dapiaggi Monica,Cremaschi Mauro

Abstract

AbstractMollusk shells from archeological deposits are often exposed to high temperatures through human-caused or natural heating events. While heat exposure affects reliability of mollusk shells for environmental reconstructions based on geochemistry, it can provide a valuable source of information on past human behaviors and human–environment interactions. We analyzed burned and not-burned bivalve and gastropod specimens collected within two megalithic circular structures in the HAS1 settlement in Oman (Late Iron Age and Classical Period). Through a multi-methodological approach, we investigated shell microstructure using scanning electron microscopy (SEM), shell mineralogy using X-ray diffraction (XRD), and shell stable-isotopic composition (δ18O, δ13C) using isotope-ratio mass spectrometry (IRMS) to infer the temperatures these specimens were exposed to and to reconstruct the processes responsible for heating the shells. Thermal response of aragonite and calcite shells having different microstructures were also determined. We found that mollusk shells at this site were exposed to three temperature ranges: a) no exposure or <300°C, b) between 250°C and 500°C, and c) ≥500°C. The heat source was likely a fire which engulfed the entire settlement, which is also supported by evidence of carbonized wooden poles found in situ inside the circular structures.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference67 articles.

1. Microscopic observations on the shell structure of bivalves—part III, genus Anadara;Kobayashi;Journal of the Geological Society of Japan,1968

2. REVISED CARBONATE-WATER ISOTOPIC TEMPERATURE SCALE

3. Orientation patterns of aragonitic crossed-lamellar, fibrous prismatic and myostracal microstructures of modern Glycymeris shells

4. Mollusk carbonate thermal behaviour and its implications in understanding prehistoric fire events in shell middens;Milano;Journal of Archaeological Science: Reports,2018

5. Shell we cook it? An experimental approach to the microarchaeological record of shellfish roasting

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3