Global variations in regional degradation rates since the Last Glacial Maximum mapped through time and space

Author:

Madoff Risa D.ORCID,Putkonen Jaakko

Abstract

AbstractTopographic diffusivity is an often-used metric of regolith mobility. It accounts for the collective effects of climate, substrate, fauna, flora, and other factors on hillslope degradation and is used to model natural lowering in landscapes. The present study assesses where temporal variations in diffusivity derived from known past climate fluctuations have occurred. We also determine where significant differences might result when modeling landscape degradation if a long-term constant diffusivity is applied instead of diffusivity that varies through time. A space-for-time substitution approach was implemented. Through use of a transfer function that correlates current diffusivities with air temperatures, we mapped the relative diffusivities globally at a 500 yr temporal resolution for 21 ka. The analyses spanned all land areas from the tropics to the poles with a spatial resolution of 3.70° latitude by 3.75° longitude using paleo-temperature data from the TraCE-21ka global paleoclimate model. The results show Arctic and subarctic regions with the highest relative maximum diffusivities and largest variance from current values. The results suggest strong surficial dynamics in the Arctic and subarctic regions driven by local and spatially transient deglaciation and long-term stability in the tropics that correlates with relatively stable climate there through the past 21 ka.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Earth-Surface Processes,Arts and Humanities (miscellaneous)

Reference63 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Projected Changes in Extreme Wet and Dry Conditions in Greece;Climate;2023-02-21

2. Hillslope roughness reveals forest sensitivity to extreme winds;Proceedings of the National Academy of Sciences;2023-01-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3